

Digital System Design using FPGA

PROJECT REPORT

TOPIC: Low Power FIR Filter design using FPGA

Submitted By: Mentor:
Tanmay Chaturvedi (Y12UC280) Dr. Kusum Lata
Paras (Y12UC174)
Adil Siddiqui (Y12UC010)

Low Power FIR Filter design using VHDL

ABSTRACT

The motive of our project is to design and implement a low power FIR filter.

We used VHDL (Very high speed integrated circuit Hardware Descriptive

Language) to support the development of filter on state-of-the art FPGA (Field

Programmable Gate Array). The filter is implemented using two main

components- D Flip Flop and adder. We carried comparison between 2-Taps

Filter, 4-Taps Filter and 10-Taps Filter. The filter efficiency was improved by

using higher order FIR filter but the power efficiency was reduced due to

increased number of components. The lowest power we achieved was 55

mWatts using 2-Tap FIR Filter based on adder and D Flip Flop in 25 MHZ with 8

bit inputs. To our conclusion, we were able to decrease the power

consumption to upto 33%. We used Xilinx Power Estimator to calculate the

power in Watts. We worked on Xilinx Family Spartan3E, device XC3S100E.

THEORY

Digital filters can be classified into 2 classes known as FIR (Finite Impulse

response) and IIR (Infinite Impulse Response) filters. Advantage of FIR over IIR

is that they are relatively stable. The output of an FIR filter Y(n) is given by the

following equation:

 () ∑ ()

Where ‘N’ is the order of filter, x(n) is the input.

To find the optimum filter response, we used Window method. In this, we used

Kaiser Window and extracted the filter coefficients for different values of N

(order).

The MATLAB code for Kaiser window:

clc;

close all;

clear all;

d=fdesign.lowpass('n,fc',9,150,1000);

Hd= window(d,'window',@kaiser);

fvtool(Hd);

Filter coefficients from above window method.

N=2:

 N=10:

N=4:

IMPLEMENTATION

Implementation of 4-Tap FIR FILTER:

VHDL CODE

Code for D-Flip Flop Component

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity DFF is
 port(
 Q : out signed(15 downto 0); --output connected to the adder
 Clk :in std_logic; -- Clock input
 D :in signed(15 downto 0) -- Data input from the M block.
);
end DFF;

architecture Behavioral of DFF is

signal qt : signed(15 downto 0) := (others => '0');

begin

Q <= qt;

process(Clk)
begin
 if (rising_edge(Clk)) then
 qt <= D;
 end if;
end process;
end Behavioral;

Main code for 2 Tap Filter:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL; arithmetic functions with Signed or Unsigned
values
entity fir_2tap is

port(Clk : in std_logic; --clock signal
 Xin : in signed(7 downto 0); --input signal
 Yout : out signed(15 downto 0) --filter output
);
end fir_2tap;

architecture Behavioral of fir_2tap is
component DFF is
 port(
 Q : out signed(15 downto 0); --output connected to the adder
 Clk :in std_logic; -- Clock input
 D :in signed(15 downto 0) -- Data input from the MCM block.
);
end component;

signal H0,H1 : signed(7 downto 0) := (others => '0');
signal M0,M1,add_out1 : signed(15 downto 0) := (others => '0');
signal Q1 : signed(15 downto 0) := (others => '0');

begin

--filter coefficient initializations.
--H = [50 50].
H0 <= to_signed(50,8);
H1 <= to_signed(50,8);

-- Multiplications of H(i) with X(in).
M1 <= H1*Xin;
M0 <= H0*Xin;

--adders
--using only 1 adder for 2 tap filter
add_out1 <= Q1 + M0;
--flipflops(for introducing a delay).

dff1 : DFF port map(Q1,Clk,M1);

--an output produced at every positive edge of clock cycle.
process(Clk)
begin

 if(rising_edge(Clk)) then
 Yout <= add_out1;
 end if;
end process;
end Behavioral;

Block Implementation

RTL Schematic:

Main code for 4 Tap Filter:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity fir_4tap is
port(Clk : in std_logic; --clock signal
 Xin : in signed(7 downto 0); --input signal
 Yout : out signed(15 downto 0) --filter output
);
end fir_4tap;

architecture Behavioral of fir_4tap is

component DFF is
 port(
 Q : out signed(15 downto 0); --output connected to the adder
 Clk :in std_logic; -- Clock input
 D :in signed(15 downto 0) -- Data input from the MCM block.
);
end component;

signal H0,H1,H2,H3 : signed(7 downto 0) := (others => '0');

signal M0,M1,M2,M3,add_out1,add_out2,add_out3 : signed(15 downto 0) :=
(others => '0');
signal Q1,Q2,Q3 : signed(15 downto 0) := (others => '0');

begin

--filter coefficient initializations.
--H = [20 29 29 20].
H0 <= to_signed(20,8);
H1 <= to_signed(29,8);
H2 <= to_signed(29,8);
H3 <= to_signed(20,8);

-- multiplications.
M3 <= H3*Xin;
M2 <= H2*Xin;
M1 <= H1*Xin;
M0 <= H0*Xin;

--adders
add_out1 <= Q1 + M2;
add_out2 <= Q2 + M1;
add_out3 <= Q3 + M0;

--flipflops(for introducing a delay).
dff1 : DFF port map(Q1,Clk,M3);
dff2 : DFF port map(Q2,Clk,add_out1);
dff3 : DFF port map(Q3,Clk,add_out2);

--an output produced at every positive edge of clock cycle.
process(Clk)
begin
 if(rising_edge(Clk)) then
 Yout <= add_out3;
 end if;
end process;
end Behavioral;

RTL Schematic:

Block Implementation

Main code for 10 Tap Filter:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity fir_10tap is
port(Clk : in std_logic; --clock signal
 Xin : in signed(7 downto 0); --input signal
 Yout : out signed(15 downto 0) --filter output
);
end fir_10tap;

architecture Behavioral of fir_10tap is

component DFF is
 port(
 Q : out signed(15 downto 0); --output connected to the adder
 Clk :in std_logic; -- Clock input
 D :in signed(15 downto 0) -- Data input from the MCM block.
);
end component;

signal H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 : signed(7 downto 0) := (others => '0');
signal
M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,add_out1,add_out2,add_out3,add_out
4,add_out5,add_out6,add_out7,add_out8,add_out9 : signed(15 downto 0) :=
(others => '0');
signal Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9 : signed(15 downto 0) := (others => '0');
begin
--filter coefficient initializations.
--H = [5 1 8 20 28 28 20 8 1 5].
H0 <= to_signed(5,8);
H1 <= to_signed(1,8);
H2 <= to_signed(8,8);
H3 <= to_signed(20,8);
H4 <= to_signed(28,8);
H5 <= to_signed(28,8);
H6 <= to_signed(20,8);
H7 <= to_signed(8,8);
H8 <= to_signed(1,8);
H9 <= to_signed(5,8);

-- multiplications.

M9 <= H9*Xin;
M8 <= H8*Xin;
M7 <= H7*Xin;
M6 <= H6*Xin;
M5 <= H5*Xin;
M4 <= H4*Xin;
M3 <= H3*Xin;
M2 <= H2*Xin;
M1 <= H1*Xin;
M0 <= H0*Xin;

--adders
add_out1 <= Q1 + M8;
add_out2 <= Q2 + M7;
add_out3 <= Q3 + M6;
add_out4 <= Q4 + M5;
add_out5 <= Q5 + M4;
add_out6 <= Q6 + M3;
add_out7 <= Q7 + M2;
add_out8 <= Q8 + M1;
add_out9 <= Q9 + M0;

--flipflops(for introducing a delay).
dff1 : DFF port map(Q1,Clk,M9);
dff2 : DFF port map(Q2,Clk,add_out1);
dff3 : DFF port map(Q3,Clk,add_out2);
dff4 : DFF port map(Q4,Clk,add_out3);
dff5 : DFF port map(Q5,Clk,add_out4);
dff6 : DFF port map(Q6,Clk,add_out5);
dff7 : DFF port map(Q7,Clk,add_out6);
dff8 : DFF port map(Q8,Clk,add_out7);
dff9 : DFF port map(Q9,Clk,add_out8);

--an output produced at every positive edge of clock cycle.

process(Clk)
begin
 if(rising_edge(Clk)) then
 Yout <= add_out9;
 end if;
end process;

end Behavioral;

RTL Schematic:

Block Implementation

Simulation Results:

We simulated the result using Xilinx Simulator. The input we gave was 8 bit

vector and filter response was also 8 bit vector. There was undefined value

seen initially due to lack of instantiation of initial input values.

Then there was XXXXXX (no value) observed in the input which signifies the

element delay generated in the designed system.

The test bench waveform output is:

Power Results:

FIR Filter
Type

Power at
25 MHz

(mWatts)

Power at
50 MHz

(mWatts)

Power at
100 MHz
(mWatts)

Delay (ns)

2- Tap
Filter

55 62 76 18.424

4- Tap
Filter

56 64 79 18.801

10- Tap
Filter

57 66 82 18.924

We used Xilinx Power Estimator (XPE), downloaded the Spartan 3E XPE 11.1

file and gave the input parameters to the XPE file.

The lowest power was achieved in the 2-tap filter where we used 2 filter

coefficients, 1 adder and 1 D-FF to generate one delay unit. The power

achieved was 55 miliWatts compared to 82 miliwatts of 10- Tap filter.

Conclusion

Thus, we conclude that 2-Tap FIR Filter is the most efficient in terms of Power

and Space acquired. Also, this filter is stable as compared to IIR filter. We are

able to get the desired filter outputs using Kaiser Window method in MATLAB.

We kept the cut-off frequency 150Hz and used the generated filter coefficients

in design required filter. The overall delay is reduced as the number of delay

register(D Flip Flop) and adders are substantially reduced while designing a low

order FIR Filter.

REFERENCES

1. http://www.scribd.com/doc/96197076/Vhdl-Simulation-of-Fir-

Filter

2. http://www.thecodingforums.com/threads/how-to-assign-a-hex-

or-decimal-value-to-a-std_logic_vector-of-length19-

bits.647395/

3. http://www.bitweenie.com/listings/vhdl-type-conversion/

4. DSD Lecture notes.

http://www.scribd.com/doc/96197076/Vhdl-Simulation-of-Fir-Filter
http://www.scribd.com/doc/96197076/Vhdl-Simulation-of-Fir-Filter
http://www.thecodingforums.com/threads/how-to-assign-a-hex-or-decimal-value-to-a-std_logic_vector-of-length19-bits.647395/
http://www.thecodingforums.com/threads/how-to-assign-a-hex-or-decimal-value-to-a-std_logic_vector-of-length19-bits.647395/
http://www.thecodingforums.com/threads/how-to-assign-a-hex-or-decimal-value-to-a-std_logic_vector-of-length19-bits.647395/
http://www.bitweenie.com/listings/vhdl-type-conversion/

